ELSI

Research & Activities

Researchers

Maruyama, Shigenori

Maruyama, Shigenori
Name
Maruyama, Shigenori
Position
Specially Appointed Professor (Principal Investigator)
Field
History of the Earth
E-mail
maruyama_at_elsi.jp
TEL
81-3-5734-2618

Main Publication List and Awards

Main Publication List

1. Maruyama, S., Ueda, Y., 1974. Schist xenoliths in ultrabasic body accompanied with the Kurosegawa tectonic zone in eastern Shikoku and their K-Ar ages. Jour. Japan. Assoc. Min. Petr. Econ. Geol. 70, 47-52.

2. Maruyama, S., 1976. A xenolith of garnet-clinopyroxene-feldspar-quartz assemblage in serpentinite accompanied with the Kurosegawa tectonic zone in central Shikoku (in Japanese with English abstract). Island-arc (Toko-kiban) 3, 59-63.

3. Maruyama, S., Ueda, Y., Banno, S., 1978. 208-240 m.y. old jadeite-glaucophane schists in the Kurosegawa tectonic zone near Kochi City, Shikoku (in Japanese with English abstract). Jour. Japan. Assoc. Min. Petr. Econ. Geol. 73, 300-310.

4. Maruyama, S., 1976. A xenolith of garnet-clinopyroxene-feldspar-quartz assemblage in serpentinite accompanied with the Kurosegawa tectonic zone in central Shikoku (in Japanese with English abstract). Island-arc (Toko-kiban) 3, 59-63.

5. Maruyama, S., Ueda, Y., Banno, S., 1978. 208-240 m.y. old jadeite-glaucophane schists in the Kurosegawa tectonic zone near Kochi City, Shikoku (in Japanese with English abstract). Jour. Japan. Assoc. Min. Petr. Econ. Geol. 73, 300-310.

6. Maruyama, S., Yamasaki, M., 1978. Paleozoic submarine volcanos in high P-T metamorphosed Chichibu system of eastern Shikoku, Japan. Journal of Volcanology and Geothermal Research 4, 199-216.

7. Maruyama, S., Shiraki, K., Komatsu, M., Tazaki, K., 1980. Petrography of an amphibolite dredged from Yap Trench. Jour. Japan. Assoc. Min. Petr. Econ. Geol. 75, 117-120.

8. Maruyama, S., 1981. The Kurosegawa melange zone in the Ino district to the north of Kochi City, central Shikoku. Journal of Geological Society of Japan 87, 568-583.

9. Maruyama, S., 1981. The Kurosegawa serpentinite melange belt and its role on the evolution of southwest Japan. Journal of Geological Society of China Memoir 4, 269-279.

10. Maruyama, S., Liou, J.G., Suzuki, K., 1982. The peristerite gap in low-grade metamorphic rocks. Contributions to Mineralogy and Petrology 81, 268-276.

11. Maruyama, S., Suzuki, K., Liou, J.G., 1983. Greenschist-amphibolite transition equilibria at low-pressures. Journal of Petrology 24, 583-604.

12. Maruyama, S., Banno, S., Matsuda, T., Nakajima, T., 1984. Kurosegawa zone and its bearing on the development of the Japanese Islands. Tectonophysics 110, 47-60.

13. Maruyama, S., Fujinawa, Y., Sakai, H., 1984. Tectonics of Asia (in Japanese). Monthly Magazine Earth 16, 475-485.

14. Seno, T., Maruyama, S., 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics 102, 53-84.

15. Liou, J.G., Maruyama, S., Cho, M., 1985. Phase-equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineralogical Magazine 49, 321-333.

16. Maruyama, S., Liou, J.G., 1985. The stability of Ca-Na Pyroxene in low-grade metabasites of high-pressure intermediate facies series. American Mineralogist 70, 16-29.

17. Maruyama, S., Liou, J.G., Sasakura, Y., 1985. Low-temperature recrystallization of Franciscan greywackes from Pacheco-Pass, California. Mineralogical Magazine 49, 345-355.

18. Maruyama, S., Cho, M., Liou, J.G., 1986. Experimental investigations of blueschist-greenschist transition equilibria: Pressure dependence of Al203 contents in sodic amphiboles-A new geobarometer. Geological Society of America Memoirs 164, 1-16.

19. Maruyama, S., Seno, T., 1986. Orogeny and relative plate motions – Example of the Japanese Islands. Tectonophysics 127, 305-329.

20. Maruyama, S., Liou, J.G., 1987. Clinopyroxene – A mineral telescoped through the processes of Blueschist facies metamorphism. Journal of Metamorphic Geology 5, 529-552.

21. Maruyama, S., Liou, J.G., 1988. Petrology of Franciscan metabasites along the Jadeite Glaucophane type facies, Cazadero, California. Journal of Petrology 29, 1-37.

22. Liou, J.G., Maruyama, S., Wang, X., Graham, S., 1989. Precambrian blueschits in the world. Tectonophysics 181, 179-205.

23. Maruyama, S., Liou, J.G., 1989. POSSIBLE DEPTH LIMIT FOR UNDERPLATING BY A SEAMOUNT. Tectonophysics 160, 327-337.

24. Maruyama, S., Liou, J.G., 1989. Possible depth limit for underplating by seamount. Tectonophysics 160, 327-337.

25. Maruyama, S., Liou, J.G., 1989. Underplating barrier of seamount. Tectonophysics 160, 327-337.

26. Maruyama, S., Terabayashi, M., Fujioka, K., 1989. Origin and Emplacement of Ophiolite: A Review. Journal of Geography (Chigaku Zasshi) 98, 319-349. 丸山茂徳, 寺林優, 藤岡換太郎, 1989. 総説-オフィオライトの起源とエンプレイスメント-. 地学雑誌 98, 319-349.

27. Isozaki, Y., Maruyama, S., Furuoka, F., 1990. ACCRETED OCEANIC MATERIALS IN JAPAN. Tectonophysics 181, 179-205.

28. Liou, J.G., Maruyama, S., Wang, X., Graham, S., 1990. PRECAMBRIAN BLUESCHIST TERRANES OF THE WORLD. Tectonophysics 181, 97-111.

29. Nakajima, T., Maruyama, S., Uchiumi, S., Liou, J.G., Wang, X., Xiao, X., Graham, S.A., 1990. Evidence for late Proterozoic subduction from 700-myr-old Blueschists in China. Nature 346, 263-265.

30. Tatsumi, Y., Maruyama, S., Nohda, S., 1990. MECHANISM OF BACKARC OPENING IN THE JAPAN SEA – ROLE OF ASTHENOSPHERIC INJECTION. Tectonophysics 181, 299-306.

31. Isozaki, Y., Maruyama, S., 1991. Studies on orogeny based on plate tectonics in Japan and new geotectonic subdivision of the Japanese Islands (in Japanese with English abstract). Journal of Geography (Chigaku Zassi) 100, 697-761. 磯崎行雄, 丸山茂徳, 1991. 日本におけるプレート造山論の歴史と日本列島の新しい地帯構造区分. 地学雑誌 100, 697-761.

32. Maruyama, S., Isozaki, Y., Tominaga, N., Takeshita, H., Itaya, T., 1992. Application of the K-Ar method on the Franciscan complex in northern California and redefined geotectonic subdivision and boundaries. AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS BULLETIN 76, 425p.

33. Fukao, Y., Maruyama, S., Obayashi, M., Inoue, H., 1994. Geologic implication of the whole mantle P-wave tomography. Journal of Geological Society of Japan 100, 4-23.

34. Kumazawa, M., Maruyama, S., 1994. Whole earth tectonics. Journal of Geological Society of Japan 100, 81-102.

35. Maruyama, S., 1994. Plume tectonics. Journal of Geological Society of Japan 100, 24-49.

36. Maruyama, S., Kumazawa, M., Kawakami, S., 1994. Towards a new paradigm on the Earth’s dynamics. Journal of Geological Society of Japan 100, 1-3.

37. Maruyama, S., Liou, J.G., Zhang, R., 1994. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. Island Arc 3, 112-121.

38. Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and their Exhumation. International Geology Review 38, 485-594.

39. Ohta, H., Maruyama, S., Takahashi, E., Watanabe, Y., Kato, Y., 1996. Field occurrence, geochemistry and petrogenesis of the Archean mid-oceanic ridge basalts (AMORBs) of the Cleaverville area, Pilbara craton, western Australia. Lithos 37, 199-221.

40. Terabayashi, M., Maruyama, S., Liou, J.G., 1996. Thermobaric structure of the Franciscan complex in the Pacheco Pass region, Diablo Range, California. Journal of Geology 104, 617-636.

41. Kimura, G., Maruyama, S., Isozaki, Y., Terabayashi, M., 1996. Well-preserved underplating structure of the jadeitized Franciscan complex, Pacheco Pass, California. Geology 24, 75-78.

42. Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and their Exhumation. International Geology Review 38, 485-594.

43. Terabayashi, M., Maruyama, S., Liou, J.G., 1996. Thermobaric structure of the Franciscan complex in the Pacheco Pass region, Diablo Range, California. Journal of Geology 104, 617-636.

44. Ernst, W. G., Maruyama, S., and Wallis, S., 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc. Natl. Acad. Sci. USA 94, 9532-9537.

45. Komiya, A., Maruyama, S., 1997. Igneous sctibity of Archean Mid-Ocean Ridge: Constraints to Composition and Temperature of Archean mantle. Volcano 42, S247-S258.

46. Liou, J. G., Maruyama, S., and Ernst, W. G., 1997. Seeing a Mountain in a Grain of Garnet. Science 276, 48-49.

47. Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M., 1997. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to present. The Island Arc 6, 121-142.

48. Maruyama, S., Liou, J.G., 1998. Initiation of ultrahigh-pressure metamorphism and its significance on the Proterozoic-Phanerozoic boundary. Island Arc 7, 6-35.

49. Maruyama, S., Nutman, A.P., Morikawa, T., Tabata, H., Liou, J.G., 1998. SHRIMP U-Pb geochronology of ultrahigh-pressure metamorphic rocks of the Dabie mountains, central China. Continental Dynamics 3, 72-85.

50. Maruyama, S., Yurimoto, H., Sueno, S., 1998. Spinel-bearing chondrules in the Allende meteorite. Meteoritics & Planetary Science 33, A98-A98.

51. Okamoto, K., Maruyama, S., 1998. Multi-anvil re-equilibration experiments of a Dabie Shan ultrahigh-pressure eclogite within the diamond-stability fields. Island Arc 7, 52-69.

52. Terabayashi, M., Maruyama, S., 1998. Large pressure gap between the Coastal and Central Franciscan belts, northern and central California. Tectonophysics 285, 87-101.

53. Komiya, T., Maruyama, S., Masuda, T., Nohda, S., Hayashi, M., Okamoto, K., 1999. Plate tectonics at 3.8-3.7 Ga: Field evidence from the Isua Accretionary Complex, southern West Greenland. Journal of Geology 107, 515-554.

54. Maruyama, S., Yurimoto, H., Sueno, S., 1999. Oxygen isotope evidence regarding the formation of spinel-bearing chondrules. Earth and Planetary Science Letters 169, 165-171.

55. Okamoto, K., Maruyama, S., 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. American Mineralogist 84, 362-373.

56. Kaneko, Y., Maruyama, S., Terabayashi, M., Yamamoto, H., Ishikawa, M., Anma, R., Parkinson, C.D., Ota, T., Nakajima, Y., Katayama, I., Yamamoto, J., Yamauchi, K., 2000. Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan. Island Arc 9, 264-283.

57. Maruyama, S., Parkinson, C.D., 2000. Overview of the geology, petrology and tectonic framework of the high-pressure-ultrahigh-pressure metamorphic belt of the Kokchetav Massif, Kazakhstan. Island Arc 9, 439-455.

58. Komiya, T., Maruyama, S., Hirata, T., Yurimoto, H., 2002. Petrology and geochemistry of MORB and OIB in the mid-Archean North Pole region, Pilbara craton, western Australia: Implications for the composition and temperature of the upper mantle at 3.5 Ga. International Geology Review 44, 988-1016.

59. Katayama, I., Maruyama, S., 2003. Inclusion study in zircon from ultrahigh-pressure metamorphic rocks: An excellent tracer of metamorphic history. Recent Res. Devel. Stat. Phys 3, 1-23.

60. Kitajima, K., Maruyama, S., Omori, S., 2003. Estimation of an environment for early life. Geochimica Et Cosmochimica Acta 67, A221-A221.

61. Maruyama, S., 2003. History of the Earth and life. Geochimica Et Cosmochimica Acta 67, A274-A274.

62. Maruyama, S., Yurimoto, H., 2003. Relationship among O, Mg isotopes and the petrography of two spinel-bearing compound chondrules. Geochimica Et Cosmochimica Acta 67, 3943-3957.

63. Komiya, T., Maruyama, S., Hirata, T., Yurimoto, H., Nohda, S., 2004. Geochemistry of the oldest MORB and OIB in the Isua Supracrustal Belt, southern West Greenland: Implications for the composition and temperature of early Archean upper mantle. Island Arc 13, 47-72.

64. Maruyama, S., Masago, H., Katayama, I., Iwase, Y., Toriumi, M., 2004. A Revolutionary New Interpretation of a Regional Metamorphism, its Exhumation, and Consequent Mountain Building. Journal of Geography (Chigaku Zasshi) 113, 727-768. 丸山茂徳, 真砂英樹, 片山郁夫, 岩瀬康幸, 鳥海光弘. (2004). 広域変成作用論の革新的変貌. 地学雑誌. 113, 5, 727-768.

65. Maruyama, S., Omori, S., Iwase, Y., 2004. On-going Regional Metamorphism beneath the Japanese Islands. Journal of Geography (Chigaku Zasshi) 113, 600-616.

66. Maruyama, S., Tsubaki, K., Taira, K., Sakai, S., 2004. Artificial upwelling of deep seawater using the perpetual salt fountain for cultivation of ocean desert. Journal of Oceanography 60, 563-568.

67. Maruyama, S., Liou, J.G., 2005. From snowball to Phaneorozic Earth. International Geology Review 47, 775-791.

68. Maruyama, S., 2007. Mt. Fuji between Two Great Waves by Katsushika Hokusai (1831-1833). Journal of Geography (Chigaku Zasshi) 116, Plate1-Plate2.

69. 69. Maruyama, S., Eguchi, T., Kasahara, J., Geshi, N., Matsumoto, J., Matsuyama, H., Yamakawa, S., 2007. Preface for the Special Issue on “Water; from the Earth’s Core to Planetary Space”. Journal of Geography (Chigaku Zasshi) 116, 1-6.70. Maruyama, S., Okamoto, K., 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res. 11, 148-165.

71. Maruyama, S., Santosh, M., 2007. Island arcs: Past and present. Gondwana Res. 11, 3-6.

72. Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary. Gondwana Res. 11, 7-37.

73. Maruyama, S., Santosh, M., 2008. Models on Snowball Earth and Cambrian explosion: A synopsis. Gondwana Res. 14, 22-32.

74. Maruyama, S., Santosh, M., 2008. Snowball earth to cambrian explosion. Gondwana Res. 14, 1-4.

75. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D., 2008. The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Res. 14, 51-72.

76. Katayama, I., Maruyama, S., 2009. Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: an excellent tracer of metamorphic history. Journal of the Geological Society 166, 783-796.

77. Kawai, K., Tsuchiya, T., Tsuchiya, J., Maruyama, S., 2009. Lost primordial continents. Gondwana Res. 16, 581-586.

78. Maruyama, S., Hasegawa, A., Santosh, M., Kogiso, T., Omori, S., Nakamura, H., Kawai, K., Zhao, D., 2009. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Res. 16, 414-430.

79. Santosh, M., Maruyama, S., Omori, S., 2009. A fluid factory in solid Earth. Lithosphere 1, 29-33.

80. Santosh, M., Maruyama, S., Sato, K., 2009. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res. 16, 321-341.

81. Santosh, M., Maruyama, S., Yamamoto, S., 2009. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res. 15, 324-341.

82. Kawai, K., Tsuchiya, T., Maruyama, S., 2010. The Second Continent (in Japanese with English abstract). Journal of Geography (Chigaku Zassi) 119, 1197-1214. 河合研志, 土屋卓久, 丸山茂徳, 2010. 第2大陸. 地学雑誌 119, 1197-1214.

83. Maruyama, S., Masago, H., Katayama, I., Iwase, Y., Toriumi, M., Omori, S., Aoki, K., 2010. A new perspective on metamorphism and metamorphic belts. Gondwana Res. 18, 106-137.

84. Safonova, I., Maruyama, S., Hirata, T., Kon, Y., Rino, S., 2010. LA ICP MS U-Pb ages of detrital zircons from Russia largest rivers: Implications for major granitoid events in Eurasia and global episodes of supercontinent formation. Journal of Geodynamics 50, 134-153.

85. Suzuki, K., Maruyama, S., Yamamoto, S., Omori, S., 2010. Have the Japanese Islands grown?: Five “Japan”s were born, and four “Japan”s subducted into the mantle (in Japanese with English abstract). Journal of Geography (Chigaku Zassi) 119, 1173-1196. 鈴木和恵, 丸山茂徳, 山本伸次, 大森総一, 2010.

86. Windley, B.F., Maruyama, S., Xiao, W.J., 2010. DELAMINATION/THINNING OF SUB-CONTINENTAL LITHOSPHERIC MANTLE UNDER EASTERN CHINA: THE ROLE OF WATER AND MULTIPLE SUBDUCTION. American Journal of Science 310, 1250-1293.

87. Isozaki, Y., Maruyama, S., Nakama, T., Yamamoto, S., Yanai, S., 2011. Growth and Shrinkage of an Active Continental Margin: Updated Geotectonic History of the Japanese Islands (in Japanese with English abstract). Journal of Geography (Chigaku Zassi) 120, 65-99. 磯崎行雄, 丸山茂徳, 中間隆晃, 山本伸次, 柳井修一, 2011. 活動的大陸縁の肥大と縮小の歴史-日本列島形成史アップデイト-. 地学雑誌 120, 65-99.

88. Maruyama, S., Komiya, T., 2011. The Oldest Pillow Lavas, 3.8-3.7 Ga from the Isua Supracrustal Belt, SW Greenland Plate Tectonics Had Already Begun by 3.8 Ga. Journal of Geography (Chigaku Zasshi) 120, 869-876. 丸山茂徳, 小宮剛, 2011. 38-37億年前のグリーンランド・イスア表成岩帯にみられる世界最古の枕状溶岩―プレートテクトニクスは38億年前にはすでに始まっていた―. 地学雑誌 120, 869-876.

89. Maruyama, S., Omori, S., Senshu, H., Kawai, K., Windley, B.F., 2011. Pacific-type Orogens New Concepts and Variations in Space and Time from Present to Past. Journal of Geography (Chigaku Zasshi) 120, 115-223. 丸山茂徳, 大森聡一, 千秋博紀, 河合研志, Windley, B.F., 2011. 太平洋型造山帯―新しい概念の提唱と地球史における時空分布―. 地学雑誌 120, 115-223.

90. Maruyama, S., Utsunomiya, A., Ishikawa, A., 2011. Ontong – Java Plateau, the World’s largest Oceanic Plateau, Has Been Subducted 50%, with the Remaining 50% on the Surface, and with a < 1% Accretion on the Hanging Wall of the Solomon Islands. Journal of Geography (Chigaku Zasshi) 120, 1035-1044. 丸山茂徳, 宇都宮敦, 石川晃, 2011. 世界最大のサイズのオントンジャワ海台は約50%すでにマントルに沈み込み,残りは西太平洋プレートの表層に残存するが,上盤側プレートに全体の質量の1%以下しかソロモン諸島付加体に付加していない. 地学雑誌 120, 1035-1044.

91. Maruyama, S., Yabuki, T., Sato, T., Tsubaki, K., Komiya, A., Watanabe, M., Kawamura, H., Tsukamoto, K., 2011. Evidences of increasing primary production in the ocean by Stommel’s perpetual salt fountain. Deep-Sea Research Part I-Oceanographic Research Papers 58, 567-574.

92. Maruyama, S., 2012. Classification of Orogenic Belts: Constraints on the Reconstruction of Paleo-geotectonic Environments Additional Remarks on “Maruyama et al. (2011): Journal of Geography (Chigaku Zasshi), vol. 120, 115-223″. Journal of Geography (Chigaku Zasshi) 121, 1090-1106. 丸山茂徳, 2012. 造山帯の分類とその意義:古造構場復元の束縛条件―「丸山ほか:太平洋型造山帯 ―新しい概念の提唱と地球史における時空分布―」論文(地学雑誌, 120巻, 115-223)の追記―. 地学雑誌 121, 1090-1106.

93. Maruyama, S., Sawaki, Y., Ebisuzaki, T., Ikoma, M., Omori, S., Komabayashi, T., 2014. Initiation of leaking Earth: An ultimate trigger of the Cambrian Explosion. Gondwana Research, 25, 910-944.

94. Santosh, M., Maruyama, S., Sawaki, Y., Meert, J.G., 2014. The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research, 25, 945-965.

95. Maruyama, S., Sawaki, Y., Ebisuzaki, T., Ikoma, M., Omori, S., Komabayashi, T., Initiation of leaking Earth: An ultimate trigger of the Cambrian Explosion. Gondwana Res. In press

96. Santosh, M., Maruyama, S., Sawaki, Y., Meert, J.G., The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Res.in press

97.Igisu, M., Komiya, T., Kawashima, M., Nakashima, S., Ueno, Y., Han, J., Shu, D., Li, Y., Guo, J., Maruyama, S., Takai, K., 2014. FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng’an, South China. Gondwana Research, 25, 1120-1138.

98.Dohm, J.M., Maruyama, S., Habitable Trinity, Geoscience Frontiers, in press.

99.Kataoka, R., Ebisuzaki, T., Miyahara, H., Nimura, T., Tomida, T., Sato, T., Maruyama, S., 2014. The Nebula Winter: The united view of the snowball Earth, mass extinctions, and explosive evolution in the late Neoproterozoic and Cambrian periods. Gondwana Research, 25, 1153-1163.

100.Kataoka, R., Ebisuzaki, T., Miyahara, H., Nimura, T., Tomida, T., Sato, T., Maruyama, S., 2014. The Nebula Winter: The united view of the snowball Earth, mass extinctions, and explosive evolution in the late Neoproterozoic and Cambrian periods. Gondwana Research, 25, 1153-1163.

101.Kikumoto, R., Tahata, M., Nishizawa, M., Sawaki, Y., Maruyama, S., Shu, D., Han, J., Komiya, T., Takai, K., Ueno, Y., 2014. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Research, 25,1057-1069.

102.Okada, Y., Sawaki, Y., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J., Maruyama, S., 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng’an and Chengjiang areas, South China. Gondwana Research, 25, 1027-1044.

103.Yamada, K., Ueno, Y., Yamada, K., Komiya, T., Han, J., Shu, D., Yoshida, N., Maruyama, S., 2014. Molecular fossils extracted from the Early Cambrian section in the Three Gorges area, South China. Gondwana Research, 25, 1108-1119.

104.Shibuya, T., Tahata, M., Ueno, Y., Komiya, T., Takai, K., Yoshida, N., Maruyama, S., Russell, M.J., 2013. Decrease of seawater CO2 concentration in the Late Archean: An implication from 2.6 Ga seafloor hydrothermal alteration. Precambrian Research, 236, 59-64.

105.Nohda, S., Wang, B.-S., You, C.-F., Isozaki, Y., Uchio, Y., Buslov, M.M., Maruyama, S., 2013. The oldest (Early Ediacaran) Sr isotope record of mid-ocean surface seawater: Chemostratigraphic correlation of a paleo-atoll limestone in southern Siberia. Journal of Asian Earth Sciences, 77, 66-76.

106.Suda, K., Ueno, Y., Yoshizaki, M., Nakamura, H., Kurokawa, K., Nishiyama, E., Yoshino, K., Hongoh, Y., Kawachi, K., Omori, S., Yamada, K., Yoshida, N., Maruyama, S., 2014. Origin of methane in serpentinite-hosted hydrothermal systems: The CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth and Planetary Science Letters, 386, 112-125.

107.Shu, D., Isozaki, Y., Zhang, X., Han, J., Maruyama, S., 2014. Birth and early evolution of metazoans. Gondwana Research, 25, 884-895.

108.Isozaki, Y., Shu, D. G., Maruyama, S., Santosh, M., 2014. Beyond the Cambrian explosion: From galaxy to genome, Gondwana Research, 25, 881-883.

109.El-Maarry, M.R., Dohm, J.M., Michael, G., Thomas, N., and Maruyama, S., 2013, Morphology and evolution of the ejecta of Hale crater in Argyre basin, Mars: results from high resolution mapping. Icarus, 226, 10.1016/j.icarus.2013.07.014, 905-922.

110.Fujisaki, W., Isozaki, Y., Maki, K., Sakata, S., Hirata, T., Maruyama, S., 2014. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia. Journal of Asian Earth Sciences 88, 62-73.

111.Saito, T., Okada, Y., Fujisaki, W., Sawaki, Y., Sakata, S., Dohm, J., Maruyama, S., Hirata, T., 2014. Accreted Kula plate fragment at 94Ma in the Yokonami-Melange, Shimanto-Belt, Shikoku, Japan. Tectonophysics. In press

112.Safonova, I., Maruyama, S., 2014. Asia: a frontier for a future supercontinent Amasia. International Geology Review. Accepted.

113.Ebisuzaki. T., Maruyama, S., 2014. United Theory of Biological Evolution: Disaster-forced Evolution through Supernova, Radioactive Ash Fall-Outs, Genome Instability, and Mass Extinctions. Geoscience Frontiers, Accepted.

114.Kawai, K., Yamamoto, S., Tsuchiya, T., Maruyama, S., 2013. The second continent: Existence of granitic continental materials around the bottom of the mantle transition zone. Geoscience Frontiers, 4, 1-6.

115.Iizuka, T., Campbell, I.H., Allen, C.M., Gill, J.B., Maruyama, S., Makoka, F., 2013. Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 107, 96-120.

116.Terabayashi, M., Matsui, T., Okamoto, K., Ozawa, H., Kaneko, Y., Maruyama, S., 2013. Micro-X-ray absorption near edge structure determination of Fe3+/sigma Fe in omphacite inclusion within garnet from Dabie eclogite, East-Central China. Island Arc, 22, 37-50.

117.Yamamoto, H., Terabayashi, M., Okura, H., Matsui, T., Kaneko, Y., Ishikawa, M., Maruyama, S., 2013. Northward extrusion of the ultrahigh-pressure units in the southern Dabie metamorphic belt, east-central China. Island Arc, 22, 51-62.

118.Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J.S., Kon, Y., Hirata, T., 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22, 89-103.

119.Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Han, J., Guo, J., Yoshida, N., Maruyama, S., Komiya, T., 2014. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research, 25, 1045-1056.

120.Sawaki, Y., Tahata, M., Ohno, T., Komiya, T., Hirata, T., Maruyama, S., Han, J., Shu, D., 2014. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research, 25, 1070-1089.

121.Li, Y.B., Kimura, J.I., Machida, S., Ishii, T., Ishiwatari, A., Maruyama, S., Qiu, H.N., Ishikawa, T., Kato, Y., Haraguchi, S., Takahata, N., Hirahara, Y., Miyazaki, T., 2013. High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-arc Seamount: Implications for the Reaction between Slab Melts and Depleted Mantle. Journal of Petrology, 54, 1149-1175.

122.Kataoka, R., Ebisuzaki, T., Miyahara, H., Maruyama, S., 2013. Snowball Earth events driven by starbursts of the Milky Way Galaxy. New Astronomy 21, 50-62.

123.Tsuchiya, T., Kawai, K., Maruyama, S., 2013. Expanding-contracting Earth. Geoscience Frontiers 4, 341-347.

124.Aoki, K., Windley, B.F., Maruyama, S., Omori, S., 2013. Metamorphic P–T conditions and retrograde path of high-pressure Barrovian metamorphic zones near Cairn Leuchan, Caledonian orogen, Scotland. Geological Magazine FirstView, 1-13.

125.Kon, Y., Komiya, T., Anma, R., Hirata, T., Shibuya, T., Yamamoto, S., Maruyama, S., 2013. Petrogenesis of the ridge subduction-related granitoids from the Taitao Peninsula, Chile Triple Junction Area. Geochemical Journal 47, 167-183.

Research Interests

“How the Earth being with life is unique and special in the universe?”

To unravel this basic question, it is necessary to see things from an interdisciplinary perspective, which transcends the boundaries between each scientific discipline such as astronomy, planetary science, geology, biology, physics, chemistry, etc. Lacking experience in researching the origin of life, we are determined to meet the challenge of unraveling this paramount mystery with profound implications for both the public and numerous other fields of study. We will answer this ever-important question through developing innovations with a new point of view which is delivered through decades-worth of interdisciplinary research. Thus far, we have carefully pieced together both the geologic and biologic evolutions of the Earth through time since its early development, unique to any previous efforts, including those viewpoints highlighted by biologists. Now we are in the nearest position to the reconstruction of the surface environment of primordial Earth where first life was born. Our research is summarized as follows: (1) planetary scientists unravel the origin of a planetary body by approaching with theories and planetary geology; (2) researchers of the history of the Earth reproduce its primordial environment based on the oldest records and studies of meteorites; and (3) genome biologists plan and conduct experiments to reproduce life by extrapolating programs for metabolism, membrane, and self-replication of the oldest life.

So far, the evolutionary histories of both the Earth and life, intricately intertwined, have been summarized in the form of a book. Before the 1970’s, this subject remained a mysterious field due to a lack of geologic methodologies that would later prove critical in unraveling the histories, including radiometric dating and the right field work-based methodology established through plate tectonics. Since the method of radioactive dating with high accuracy was established and geological knowledge about plate-boundary processes was widely accepted, the research for the Precambrian Earth has rapidly progressed. As a result, the study of the history of the Earth and life has drastically changed. However, it has not been wholly summarized yet.

Mainly directed by Prof. Maruyama, interdisciplinary study (combining accretionary geology, radioactive dating, geochemistry (SIMS + LA-ICP-MS), paleontology, petrology, paleomagnetism, geophysics, planetary science) started in 1990, involving 25 countries including about 30 research institutions. Continuing to present-day, the study is performed as an international collaborative project. Through this work, Maruyama and Isozaki (1998) first proposed the model of the history of life on the Earth. Since then, the model has been revised with the cooperation of researchers involved in the project (Maruyama et al., 2002, 2008, 2013). The remarkable point of their model is the explanation of Earth life being the result of catastrophic evolution which is systematically coincident with dynamic behavioring of the solid Earth, the surface environment, and the evolution of life. They named the remarkable events in evolution as “the Big 7 events of Earth history”.

Our next challenge is to unravel the origin of the Earth and life by focusing on the role of the Sun and the fluctuation of the Universe, and show how the primordial atmosphere and the chemical composition and volume of the primordial ocean were correlated with the evolution of life. It will be another challenge to quantify the fluctuation of the Earth system involving the Big 7 events of Earth history.

Our final goal is to systematize “Earth bioplanetology” or “Astrobiology”. There are significant questions that will be addressed through our interdisciplinary and international effort. Examples include what initial conditions of the Universe controlled the beginning of life on planets and what other conditions make life able to evolve into large multi-cellular animals and to finally establish civilization on the planet? To unravel universal conditions to explain the origin of life and its evolution is the goal that we are going to achieve.