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Supplementary Information for  

Nutrient-dependent growth underpinned the Ediacaran transition to large body size  

 

Supplementary Methods 

 

Measuring size growth 

Rangeomorph body patterning is hypothesised to have followed a program of axial, 

sub-apical branching in which new lateral branches formed at the extremities of the frond 1 2. 

Once established, these branches continued to grow in size during life 1 2. However, the 

developmental mechanisms of size growth in fossil rangeomorphs have not previously been 

studied.  

To infer patterns and rates of biological growth throughout ontogeny, we require 

measures of size (such as length, area and volume) and a way to estimate the change in size 

over time 3. For fossil organisms, the time component is usually unknown due to the coarse 

timescale of the geological record relative to biological lifespans. However the iterative 

branching of the rangeomorph frond 2 allows measurement of branch segment size against 

ordinal age in an iterative growth series (giving a scaling relationship which implicitly relates 

to time e.g. see 4). As a result, we can read back the sizes of sequential stem internodes to 

infer the history of internode growth. 

To do this, 3D measurements were taken using micro-CT scans of an exceptionally 

preserved specimen of Avalofractus abaculus (Royal Ontario Museum specimen number 

63005, replica of Rooms Museum specimen number NFM F-754, described in 5). This is a 

three-dimensional impression fossil (Fig. 1). The fossil was collected previously from bed 

FS-52 from the Trepassey Formation at Spaniard’s Bay, Newfoundland (<565 Ma 6), which 

avoided significant compression, or deformation resulting from tectonic cleavage, and is 
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exceptionally fine-grained, consequently showing some of the best preservation known from 

the Ediacaran 5 6 7. The upper region of the fossil is moulded in positive relief and the lower 

in negative relief. These may represent exterior moulds of the upper and lower surfaces of the 

organism, although some interior body tissue may possibly have been cast 6 7, particularly in 

the central-lower, apparently decayed, region 6. The exposed central axis, or stem, can be 

polarised from youngest (apex) to oldest (base) independently of internode size. This 

orientation is based on the presence of an elongate basal stem segment (Fig. 1), which in 

other, complete specimens connects to an anchoring holdfast ( 8 Fig. 1.1), as well as a general 

increase in the length of the primary branches from the stem apex to base. Sequential stem 

internodes were identified as continuous unbranched segments between consecutive primary 

lateral branches (illustrated Fig. 1). 

 

CT-data collection and analysis 

3D micro-CT scanning of specimen ROM 63005 was performed using a Nikon 

Metrology XT H 225 high-resolution scanner at the Cambridge Biotomography Centre, using 

a voltage of 105 kV and current of 183 uA. The CT scan voxel resolution was 0.049 mm. A 

volume rendering was then reconstructed and virtually sliced, perpendicular to the specimen 

surface, at 0.33 mm intervals using the program Drishti 9. At each slice height, the cross-

sectional width of the stem was measured, giving a total of 61 measurements at continuously 

distributed heights (Fig. 1, Fig. S1, Supplementary Table 1). There is a poorly preserved 

region, in which the stem is effaced, at the transition between comparatively well-preserved 

regions in positive versus negative relief (Fig. 1). Width values for cross-sections through this 

region of the fossil were excluded, leaving 46 stem width measurements (with 27 and 19, 

respectively, for the positive and negative relief regions, Supplementary Table 2). 
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Stem shape and retrodeformation 

The cross-sectional stem shape was reconstructed, based on comparison of the 

measured width w and the perpendicular distance b from the midpoint to the surface of the 

stem (Fig. S1; Supplementary Table 2). Comparisons of cross-sectional width w and height b 

show that the stem is slightly vertically flattened (mean (b/w) was 0.34 with standard error SE 

= 0.035, n = 27 for the positive relief region and mean = 0.27, SE = 0.029, n = 19 for the 

negative relief region). Since the inferred axis of compression is approximately parallel to the 

direction of sedimentary compaction (vertical and perpendicular to the bedding surface), this 

can be attributed to slight post-mortem compression. An alternative possibility is that this is a 

biological feature, reducing internal volume relative to surface area. However, in practice, 

relative to the overall measurement range the effect on calculated volumes is very small (Fig. 

S2). 

A retrodeformation calculation was performed to calculate the circular cross-sectional 

radius as r = p/(2π) where p is the elliptical stem perimeter (calculated separately for the 

positive and negative relief regions). Elliptical stem perimeter was calculated as 𝑝𝑝 ≈

2𝜋𝜋�𝑎𝑎2+𝑐𝑐2

2
 where a = w/2 and c = w × mean(b/w). 

For stem segments, the lateral surface area (𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and volume (𝑉𝑉) were then 

calculated using the retrodeformed radius, treating each sampled stem segment as a circular 

conical frustum, where 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are, respectively, the radii at the apical and basal 

ends, and 𝑙𝑙 is the frustum length: 

𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋 × �𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� × ��𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
2 + 𝑙𝑙2 

(1) 

𝑉𝑉 = �
1
3�

× 𝜋𝜋 × 𝑙𝑙 × �𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 + 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 + �𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�� 

(2) 
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The distances from the stem apex at which the attachment between a lateral branch 

and the stem came into, and out of, view were also recorded, and the origination point of each 

lateral branch was measured as the mid-point between these distances (illustrated Fig. 1). The 

length of each stem internode was then calculated as the distance between adjacent primary 

lateral branch origination points (Supplementary Table 3). 

 

Geometric calculations 

A strong linear correlation between retrodeformed stem diameter and stem length (R2 

= 0.84, p << 0.0001) confirmed that the quality of fossil preservation in Avalofractus 

abaculus specimen ROM 63005 is sufficient to provide a consistent signal of biological 

scaling. Using Shapiro-Wilk tests, diameter values were confirmed to be normally distributed 

for both regions of the stem preserved in positive relief (n = 27, p = 0.77) and negative relief 

(n = 19, p = 0.39). To estimate the surface area (Eqn. 1) and volume (Eqn. 2) of sequential 

stem internodes (which are indicated in Fig. 1), the best-fitting relationship between stem 

length and diameter was first established in order to estimate the basal and apical diameter for 

each internode. To do this, curve fitting was used to test a range of standard biological growth 

curves 10 against observed size data, using MatLab and Curve Expert 2.3 (2011-2016 Daniel 

Hyams). Four alternative scaling functions of length (L) to diameter (D) for conical biological 

structures (following 10) were compared against retrodeformed stem measurements: half 

power, L = D0.5, D = L2; two-thirds power L = D(2/3), D = L1.5; isometric (linear) L = D1, D = 

L1; and 1.5 power L = D1.5, D = L(2/3) (Fig. S3). The best fitting scaling function was then 

selected based on the highest R2 value, calculated from the residual differences between 

observed and predicted diameters (R2 = 1 – SSres/SStot where SStot is the total sum of squared 

differences from the mean and SSres is the sum of squared residuals). This indicated that 

isometric scaling of stem length to diameter (Fig. 1, Fig. S3) provides a better fit (R2 = 0.37) 
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than either positive or negative allometric scaling (half power R2 = 0.02, two-thirds power 

function R2 = 0.27; 1.5 power function R2 = 0.04). The surface area and volume of stem 

internodes were then calculated based on diameter values from the best fitting (isometric) 

scaling relationship (Fig. 1, Fig. S3). 

 

3D growth models 

For the null hypothesis of exponential internode growth, proportionate growth (the 

proportion, r, of current size by which internode size increases at the next growth step) 

remains constant throughout the growth period. For example, exponential growth is observed 

among populations of bacterial unicells with unlimited nutrient access 11, in the early growth 

of animal cancer tumours 12 and in young plants before limiting factors such as self-shading 

take effect 13. Under the null hypothesis of exponential growth, the volume (𝑣𝑣) of a given 

rangeomorph branch internode which has gone through 𝑖𝑖 growth steps is predicted to be: 

𝑣𝑣𝑖𝑖 = 𝑣𝑣0(1 + 𝑟𝑟)𝑖𝑖 

(3) 

Where 𝑣𝑣0 is the starting volume of an internode, and r is the proportion of volume to be 

added at each growth step. Given iterative, apical lateral branching, which adds one new axial 

internode at each growth step, there will be 𝑛𝑛 + 1 internodes at branch growth step 𝑛𝑛 (with 

step numbering starting at zero). The total branch volume at step 𝑛𝑛 is then given by the sum 

of sizes of all existing internodes: 

𝑉𝑉𝑉𝑉 =  �𝑣𝑣𝑖𝑖

𝑖𝑖=𝑛𝑛

𝑖𝑖=0

 

(4) 

This is equivalent to: 
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𝑉𝑉𝑉𝑉 =  𝑣𝑣0 × �(1 + 𝑟𝑟)𝑖𝑖
𝑖𝑖=𝑛𝑛

𝑖𝑖=0

 

(5) 

Which gives: 

𝑉𝑉𝑛𝑛 = �𝑣𝑣0 × �(𝑟𝑟 + 1)(𝑛𝑛+1) − 1�� /𝑟𝑟 

(6) 

Under the alternative hypothesis of nutrient and size-dependent growth (Fig. 3b), total 

volume is also given by the sum of volumes of all existing internodes (Eqn. 4). However in 

this case, the proportionate growth in internode volume at a given growth step, denoted 𝑟𝑟𝑖𝑖, 

decreases between growth steps. Consequently, internode volume grows more slowly given 

size-dependent growth than under the null model of exponential growth. For size-dependent 

growth, the volume (𝑣𝑣) of a given internode which has gone through 𝑖𝑖 growth steps is: 

𝑣𝑣𝑖𝑖 = 𝑣𝑣0 + 𝑣𝑣𝑖𝑖−1 × 𝑟𝑟𝑖𝑖−1 + 𝑣𝑣𝑖𝑖−2 × 𝑟𝑟𝑖𝑖−2+, … , 𝑣𝑣𝑖𝑖−𝑖𝑖 × 𝑟𝑟𝑖𝑖−𝑖𝑖 

(7) 

Computer simulations 

Growth in size of rangeomorph branch internodes was simulated, using MatLab 

scripts written by J.F.H.C. (Supplementary Computer Code), under alternative models of 

exponential volumetric growth (the null hypothesis), nutrient-dependent growth (the 

alternative hypothesis), and nutrient-dependent growth with varying nutrient levels 

(simulated vertically increasing nutrient gradient). The branching structure was specified 

using a simplified Lindenmayer-system (after 2), with two principal parameters: branching 

angle (specified at 45°) and internode volume (updated at each growth step according to the 

given growth model). For the exponential growth model, the volume (vi) of a given internode 

was increased by the same proportion (𝑟𝑟) at each step. The new length of the internode was 

then calculated by solving the equation relating volume of a conical frustum to length (li), 
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using the isometric scaling relationship of stem diameter (D) to stem length (L) based on 

measured data (D = L × 0.05, Fig. 1): 

𝑣𝑣 =
1
3

× pi × �𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� × �𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 +  (𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 0.025)2 + �𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × (𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 0.025)�� 

(8) 

Where lapical is the length at the internode apex, lbasal is the length at the internode base, 

rapical is the apical internode radius, and internode length is equal to li=lbasal- lapical. 

The nutrient-dependent growth simulations used a simple model in which the 

proportion of internode volume (𝑟𝑟𝑖𝑖) to be added at a given growth step (i) was proportional to 

the relative surface area to volume ratio of the internode (SA/V), where 𝑟𝑟0 is the starting 

proportion and 𝑆𝑆𝑆𝑆0/𝑉𝑉0 is the starting surface area to volume ratio:  

𝑟𝑟𝑖𝑖 = 𝑟𝑟0 × 𝑆𝑆𝑆𝑆𝑖𝑖/𝑉𝑉𝑖𝑖
𝑆𝑆𝑆𝑆0/𝑉𝑉0

. 

(9) 

Environmental nutrient gradients were simulated by multiplying the size-dependent 

growth proportion (Eqn. 9) by a factor relating the internode’s current position to the starting 

point (e.g. simulating linearly increasing nutrient levels with increasing vertical position, Fig. 

3e). 

 

1D growth models 

CT-scan data from an exceptionally preserved specimen provides fine-scale, 3D 

information on the morphology and geometry of rangeomorph branches (Fig. 1). This is ideal 

since it allows the calculation and analysis of branch length, diameter, surface area and 

volume. However, most rangeomorph fossils do not expose the individual branches 

(including the stem) in 3D and the most common method for fossil digitisation has been 

photography. To facilitate analysis of photographic data, our 3D volumetric growth models 

can be projected down to give 1D predictions for growth in length. This enabled model 
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testing, using CurveExpert Professional version 2.5.3. Predicted growth curves were tested 

against measurements of the spacing, along the central axis, of primary lateral branches, from 

digital photographs of rangeomorph specimens. Where primary branches can be identified in 

a continuous alternating series, on well preserved specimens, the spaces between them 

indicate sequential stem internode lengths (e.g. Fig. 1). Additional specimens analysed in 1D 

were the holotype of Charnia masoni (replica held in the Department of Earth Sciences, 

University of Cambridge of Leicester City Museum specimen LEICT G279) and an 

undescribed South Australian Museum rangeomorph specimen, showing exceptional, fine-

scale preservation. 

The most important characteristic of exponential growth (the null hypothesis) is that 

size rises increasingly steeply, by the power of the growth step (Eqns. 3,6). Equation 6, 

describing cumulative exponential volume growth across stem internodes, is well represented 

by a simple exponential model: 𝑦𝑦 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏 (Fig. S8) e.g. for curve fitting and model testing. 

Length can be expected to be proportionate to the cube root of volume: 𝑣𝑣~𝑙𝑙3 14 and 𝑙𝑙~√𝑣𝑣3  

(precise equation for conical frusta Eqn. 2). Therefore, under the exponential volumetric 

model, length will also grow according to an exponential function (Fig. S9), though this 

curve will be less steep than that for volume (Fig. S8). 

In contrast, nutrient-dependent growth that is affected by the surface area to volume 

ratio predicts that size will grow less steeply as growth proceeds (with size growing by a 

reduced proportion at each growth step). In the simulations conducted here, volumetric 

growth of an internode is proportionate to its surface area to volume ratio (Eqn. 9).  

Therefore, volumetric growth declines as internodes age, due their increasing size and 

decreasing surface area to volume ratio. Simulated nutrient-dependent growth in cumulative 

stem length, across sequential internodes, is well approximated by a simple quadratic 

function for curve fitting and model testing (Fig. S10). 
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Terminology 

Throughout the manuscript, we use the term ‘nutrient’ to mean any substance required 

for metabolism and growth, including chemical elements such as oxygen (as is common in 

the biological literature 15) and compounds such as organic molecules. The term ‘tissue’ is 

also used in a general sense, meaning the composite cellular material of which an organism is 

composed, rather than implying any particular grade of organisation (e.g. with differentiated 

tissues). 

 

Code availability 

Computer code used in this study is provided in the online Supplementary 

Information. 

 

Supplementary Figures 

 

 

Figure S1. Virtual slice through a micro-CT scan of Avalofractus abaculus (specimen 

ROM 63005). This illustrates an example of cross-sectional stem width (w) and the 

perpendicular distance to the stem surface (b) for the positive relief stem region. 
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Figure S2. Calculated volumes for conical stem frusta. a, Calculated frustum volume 

plotted against measured frustum width (log 10). Calculated volumes for conical frusta 

treated as elliptical (with shape calculated from the measurement data as shown in Fig. S1) 

are only marginally lower than those calculated after retrodeformation to a circular cross-

section. b, Calculated frustum volume plotted against retrodeformed frustum diameter (log 

10). Linear regression lines are shown with their corresponding equations (matched colours). 
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Figure S3. Retrodeformed stem diameter D for the positive relief stem region (red 

crosses) and negative relief stem region (blue crosses) versus length from the stem apex 

L. Values are shown as a proportion of the basal measurement. Diameter values were 

reflected and translated to the origin to illustrate stem diameter visually (with proportionate 

diameter indicated by the distance between the two data points at a given height), following 

10. Lines show 4 alternative scaling models 10: half power, L = D0.5, D = L2 (light grey); two-

thirds power L = D(2/3), D = L1.5 (mid grey); isometric L = D1, D = L1 (dark grey); 1.5 power 

function L = D1.5, D = L(2/3) (black). The isometric function (dark grey) is the best fit to the 

observed data (R2 values: half power 0.02; two-thirds power 0.27; isometric 0.37; 1.5 power 

0.04). 
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Figure S4. Retrodeformed stem diameter D for the positive relief stem region versus 

length from the stem apex L (blue circles). Blue line, linear regression with slope = 0.03, 

intercept = 0.19, R2 = 0.80, p < 0.0001. Red line, linear regression with intercept constrained 

to zero, slope = 0.055, R2 = 0.40, p = 0.0003. The 95% confidence band is shown in darker 

shading, the 95% prediction band is shown in lighter shading. 
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Figure S5. Stem surface area to volume ratio across internodes of increasing ordinal 

age. Cumulative surface area (SA) and volume (V) were calculated based on the inferred 

isometric scaling relationship for stem length and diameter (grey line on Fig. 1). The black 

line shows a power function fitted to these data. Inset text shows the equation for the 

function. 
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Figure S6. Inferred proportion of volume added along stem internodes of increasing 

ordinal age and volume. Cumulative volume (V) was calculated, treating internodes as 

conical frusta, based on the inferred isometric scaling relationship for length and diameter 
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(grey line on Fig. 1). Inset text shows the equation for a curve fitting the data. a, 

Untransformed data on a linear scale. The black line shows a power fit to the data. b, Log 10 

transformed data (also shown in main text Fig. 2a). The black line shows a linear fit to the 

data, R2 = 0.64, p = 0.0019 (compatible with a power function for untransformed data on a 

linear scale as shown in panel a). 
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Figure S7. Proportion of volume added along stem internodes of increasing ordinal age 

and volume in computer simulations of nutrient-dependent growth. Computer 

simulations using the nutrient-dependent growth model predict a decline in proportionate 

internode volume growth at each growth step, similar to that observed for measured fossil 

data (Fig. S6b, above). In simulation, the precise slope of the decline depends on the starting 

growth proportion (figures show linear regression lines). E.g. with 13 growth steps and initial 

volume growth of 1000%, the slope is -0.3667 (a); with 2000% the slope is -0.3633 (b).  
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Figure S8. Curve fitting of an exponential curve to simulated exponential growth in 

cumulative stem volume. Simulated data for stem internodes (blue circles, arbitrary units) 

generated with a starting internode length of 0.1, volume of 6.54e-7, a proportionate volume 

increase of r = 10 at each step, over n = 13 growth steps. Both the summed exponential 

model (Eqn. 6) and simple exponential model (𝑦𝑦 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏, returning a = 0.038, b = 0.799) 

give an excellent, equal scoring (R2 > 99%) fit to the simulated data (red line overlying blue 

line), confirming usefulness for model testing against real data.  
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Figure S9. Curve fitting of an exponential curve to growth in cumulative stem length 

simulated under the exponential volumetric model. Simulation parameters: starting length 

= 0.1, starting volume = 6.54e-7, r = 10, n = 13. An exponential model, 𝑦𝑦 = 𝑎𝑎𝑒𝑒𝑏𝑏𝑏𝑏, returning 

a = 0.10, b = 0.80, gives an excellent fit to the simulated data (R2 > 99%), confirming its 

usefulness for model testing against real data. Under the AIC the exponential function (blue 

line) is confirmed to give a better fit, with likelihood 100%, than the quadratic function (red 

line), which is instead suitable for the nutrient-dependent growth model shown below in Fig. 

S10 (exponential AICc = -47.875, dof = 12, quadratic AICc = 173.007, dof = 11). 95% 

confidence band, darker shading; 95% prediction band, lighter shading. 
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Figure S10. Curve fitting of a quadratic curve to growth in cumulative stem length 

simulated under the nutrient-dependent volumetric model. Simulation parameters: 

starting internode length 0.1, starting volume 6.54e-7, starting volume increase r = 10, n = 13 

growth steps. A simple quadratic curve (𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2, returning a = 0.04, b = 0.18, c = 

0.01) gives a good fit to the simulated data (R2 > 99%), confirming its usefulness for model 

testing against real data. Under the AIC the quadratic function (blue line) is confirmed to give 

a better fit, with likelihood 100%, than the exponential function (red line), which is instead 

suitable for the exponential growth model shown in Fig. S9. AICc quadratic = -95.86, 

exponential = -40.63. 95% confidence band, darker shading; 95% prediction band, lighter 

shading. 
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Figure S11. Number of stem internodes versus cumulative stem length among 

rangeomorph specimens. These data are also shown in Fig. 2. Here the axes are reversed for 

comparison to previous analyses of specimen total ‘modules’ (primary branches) versus 

length (e.g. 16). Comparative analyses of total specimen values consider the endpoints of 

individual growth trajectories (a). Plotting data as the proportion of the maximum specimen 

value (b) illustrates that the patterns of growth are essentially indistinguishable after 

accounting for differences in total size. Specimens were Avalofractus abaculus ROM 63005 
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(black circles), Charnia masoni holotype replica (open circles) and an undescribed South 

Australian Museum specimen (grey circles). 

 

Figure S12. Curve fitting of linear and quadratic curves to growth in cumulative stem 

length. a, Avalofractus abaculus specimen ROM 63005. b, Charnia masoni holotype 

(replica). c, Undescribed South Australian Museum specimen. Fitted quadratic curves (blue 

lines), supporting nutrient-dependent growth (Fig. S10). Fitted null hypothesis (red lines) of 

linear growth. Akaike Information Criterion AICc (quadratic, linear) and corresponding 

likelihood that the quadratic curve is the better model: a, -27.69, -15.95, 99.7196%; b, 53.24, 

126.72, 100%; c, -26.38, 37.00, 100%. Bands: 95% confidence (darker) and 95% prediction 

(lighter). 
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